Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8694, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622149

RESUMO

We aimed to investigate the expression and clinic significance of Rac GTPase Activating Protein 1 (RACGAP1) in human lung adenocarcinoma (LUAD). Online database analysis revealed a significant increase in RACGAP1 mRNA expression among 26 types of tumor tissues, including LUAD tissues. Online database and tissue microarray analyses indicated that RACGAP1 expression was significantly upregulated in LUAD tissues. Genetic variation analysis identified four different genetic variations of RACGAPs in LUAD. Moreover, online database analysis showed that RACGAP1 upregulation was correlated with shorter survival in patients with LUAD. After silencing RACGAP1 expression in A549 cells using siRNA and assessing its protein levels via Western blotting, we found that RACGAP1 knockdown inhibited cell growth and induced apoptosis determined using the Cell Counting Kit-8 assay, colony formation assay, and flow cytometry. Mechanistically, western blot analysis indicated that Bax expression increased, whereas Bcl-2 expression decreased. Moreover, RACGAP1 knockdown attenuated PI3K/AKT pathway activation in lung cancer cells. Taken together, our findings showed that RACGAP1 was overexpressed in LUAD tissues and played an important role in lung cancer by increasing cell growth through the PI3K/AKT signaling pathway. This study suggests recommends evaluating RACGAP1 in clinical settings as a novel biomarker and potential therapeutic target for lung cancer.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Adenocarcinoma de Pulmão/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Movimento Celular/genética
2.
Transl Oncol ; 43: 101895, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38377935

RESUMO

BACKGROUND: Osimertinib, a third-generation epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI), is the preferred treatment for EGFR-mutated lung cancer. However, acquired resistance inevitably develops. While non-coding RNAs have been implicated in lung cancer through various functions, the molecular mechanisms responsible for osimertinib resistance remain incompletely elucidated. METHODS: RNA-sequencing technology was employed to determine differentially expressed lncRNAs (DE-lncRNAs) and mRNAs (DE-mRNAs) between H1975 and H1975OR cell lines. Starbase 2.0 was utilized to predict DE-lncRNA and DE-mRNA interactions, constructing ceRNA networks. Subsequently, functional and pathway enrichment analysis were performed on target DE-mRNAs to identify pathways associated with osimertinib resistance. Key target DE-mRNAs were then selected as potential risk signatures for lung adenocarcinoma (LUAD) prognostic modeling using multivariate Cox regression analyses. The Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) and immunohistochemistry staining were used for result validation. RESULTS: Functional analysis revealed that the identified DE-mRNAs primarily enriched in EGFR-TKI resistance pathways, especially in the PI3K/Akt signaling pathway, where their concerted actions may lead to osimertinib resistance. Specifically, upregulation of LINC00313 enhanced COL1A1 expression by acting as a miR-218-5p sponge, triggering an upstream response that activates the PI3K/Akt pathway, potentially contributing to osimertinib resistance. Furthermore, the expressions of LINC00313 and COL1A1 were validated by qRT-PCR, and the activation of the PI3K/Akt pathway was confirmed by immunohistochemistry staining. CONCLUSIONS: Our results suggest that the LINC00313/miR-218-5p/COL1A1 axis potentially contributes to osimertinib resistance through the PI3K/Akt signaling pathway, providing novel insights into the molecular mechanisms underlying acquired osimertinib resistance in LUAD. Additionally, our study may aid in the identification of potential therapeutic targets for overcoming resistance to osimertinib.

3.
J Clin Transl Hepatol ; 12(1): 25-35, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38250463

RESUMO

Background and Aims: As a subunit of the condensin complex, NCAPG has an important role in maintaining chromosome condensation, but its biological function and regulatory mechanism in hepatocellular carcinoma (HCC) remains undefined. Methods: The prognostic ability of NCAPG in HCC patients was examined by univariate and multivariate Cox regression analysis. ROC curves were plotted to compare the predictive ability of NCAPG and AFP. Double luciferase reporter system, and ChIP were used to investigate transcriptional potential of E2F1 to NCAPG. Pyroptosis was observed by scanning electron microscopy. Protein expression of NCAPG, E2F1, and major proteins constituting NLRP3 inflammasome was determined by western blotting and ELISA. An in vivo tumor formation assay was conducted to verify the in vitro results. Results: Up-regulated NCAPG was identified in HCC tissues compared with adjacent tissue and high NCAPG was positively correlated with poor prognosis. Serum NCAPG mRNA level was a prognostic factor in HCC patients and also a diagnostic factor with higher predictive ability compared with AFP [AUROC 0.766 (95% CI: 0.650-0.881) vs. 0.649 (95% CI 0.506-0.793)]. HBx transfection resulted in concomitant up-regulation of E2F1 and NCAPG. E2F1 significantly increased the activity of luciferase reporter fused with NCAPG reporter, and the interaction of E2F1 and NCAPG gene was confirmed by ChIP. Silencing of E2F1 resulted in significant down-regulation of NCAPG. Knockdown of NCAPG promote pyroptosis mediated by NLRP3 inflammasome activation in multiple HCC cell lines and also suppressed tumorigenesis in vitro. Conclusions: We identified a novel role of NCAPG in the regulation of NLRP3 inflammasome-mediated pyroptosis, which was regulated by its upstream transactivator, E2F1. The role of E2F1-NCAPG-NLRP3 regulation of pyroptosis network may be a potential target in HCC treatment.

4.
Stem Cells Transl Med ; 12(8): 497-509, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37399531

RESUMO

Recent studies have shown a close relationship between the gut microbiota and Crohn's disease (CD). This study aimed to determine whether mesenchymal stem cell (MSC) treatment alters the gut microbiota and fecal metabolite pathways and to establish the relationship between the gut microbiota and fecal metabolites. Patients with refractory CD were enrolled and received 8 intravenous infusions of MSCs at a dose of 1.0 × 106 cells/kg. The MSC efficacy and safety were evaluated. Fecal samples were collected, and their microbiomes were analyzed by 16S rDNA sequencing. The fecal metabolites at baseline and after 4 and 8 MSC infusions were identified by liquid chromatography-mass spectrometry (LC--MS). A bioinformatics analysis was conducted using the sequencing data. No serious adverse effects were observed. The clinical symptoms and signs of patients with CD were substantially relieved after 8 MSC infusions, as revealed by changes in weight, the CD activity index (CDAI) score, C-reactive protein (CRP) level, and erythrocyte sedimentation rate (ESR). Endoscopic improvement was observed in 2 patients. A comparison of the gut microbiome after 8 MSC treatments with that at baseline showed that the genus Cetobacterium was significantly enriched. Linoleic acid was depleted after 8 MSC treatments. A possible link between the altered Cetobacterium abundance and linoleic acid metabolite levels was observed in patients with CD who received MSCs. This study enabled an understanding of both the gut microbiota response and bacterial metabolites to obtain more information about host-gut microbiota metabolic interactions in the short-term response to MSC treatment.


Assuntos
Doença de Crohn , Células-Tronco Mesenquimais , Microbiota , Humanos , Doença de Crohn/terapia , Ácido Linoleico , Resultado do Tratamento , Células-Tronco Mesenquimais/fisiologia
5.
Materials (Basel) ; 16(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37512227

RESUMO

The development and utilization of new plant-fiber composite materials and microcellular foam molding processes for the manufacturing of automotive components are effective approaches when achieving the lightweight, low-carbon, and sustainable development of automobiles. However, current research in this field has mainly focused on component performance development and functional exploration, with a limited assessment of environmental performance, which fails to meet the requirements of the current green and sustainable development agenda. In this study, based on a life cycle assessment, the resource, and environmental impacts of plant-fiber composite material automotive components and microcellular foam molding processes were investigated. Furthermore, a combined approach to digital twinning and life cycle evaluation was proposed to conduct resource and environmental assessments and analysis. The research results indicate that under current technological conditions, resource and environmental issues associated with plant-fiber composite material automotive components are significantly higher than those of traditional material components, mainly due to differences in their early-stage processes and the consumption of electrical energy and chemical raw materials. It is noteworthy that electricity consumption is the largest influencing factor that causes environmental issues throughout the life cycle, especially accounting for more than 42% of indicators such as ozone depletion, fossil resource consumption, and carbon dioxide emissions. Additionally, the microcellular foam molding process can effectively reduce the environmental impact of products by approximately 15% and exhibits better overall environmental performance compared to chemical foaming. In future development, optimizing the forming process of plant-fiber composite materials, increasing the proportion of clean energy use, and promoting the adoption of microcellular foam injection molding processes could be crucial for the green and sustainable development of automotive components.

6.
Cell Death Dis ; 14(6): 373, 2023 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355626

RESUMO

Phosphodiesterase 4D interacting protein (PDE4DIP) is a centrosome/Golgi protein associated with cyclic nucleotide phosphodiesterases. PDE4DIP is commonly mutated in human cancers, and its alteration in mice leads to a predisposition to intestinal cancer. However, the biological function of PDE4DIP in human cancer remains obscure. Here, we report for the first time the oncogenic role of PDE4DIP in colorectal cancer (CRC) growth and adaptive MEK inhibitor (MEKi) resistance. We show that the expression of PDE4DIP is upregulated in CRC tissues and associated with the clinical characteristics and poor prognosis of CRC patients. Knockdown of PDE4DIP impairs the growth of KRAS-mutant CRC cells by inhibiting the core RAS signaling pathway. PDE4DIP plays an essential role in the full activation of oncogenic RAS/ERK signaling by suppressing the expression of the RAS GTPase-activating protein (RasGAP) neurofibromin (NF1). Mechanistically, PDE4DIP promotes the recruitment of PLCγ/PKCε to the Golgi apparatus, leading to constitutive activation of PKCε, which triggers the degradation of NF1. Upregulation of PDE4DIP results in adaptive MEKi resistance in KRAS-mutant CRC by reactivating the RAS/ERK pathway. Our work reveals a novel functional link between PDE4DIP and NF1/RAS signal transduction and suggests that targeting PDE4DIP is a promising therapeutic strategy for KRAS-mutant CRC.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Neoplasias Colorretais , Proteínas do Citoesqueleto , Neurofibromina 1 , Humanos , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Resistencia a Medicamentos Antineoplásicos/genética , Mutação , Neurofibromina 1/genética , Neurofibromina 1/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo
7.
Genomics Proteomics Bioinformatics ; 21(2): 243-258, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36640825

RESUMO

Organs-on-a-chip is a microfluidic microphysiological system that uses microfluidic technology to analyze the structure and function of living human cells at the tissue and organ levels in vitro. Organs-on-a-chip technology, as opposed to traditional two-dimensional cell culture and animal models, can more closely simulate pathologic and toxicologic interactions between different organs or tissues and reflect the collaborative response of multiple organs to drugs. Despite the fact that many organs-on-a-chip-related data have been published, none of the current databases have all of the following functions: searching, downloading, as well as analyzing data and results from the literature on organs-on-a-chip. Therefore, we created an organs-on-a-chip database (OOCDB) as a platform to integrate information about organs-on-a-chip from various sources, including literature, patents, raw data from microarray and transcriptome sequencing, several open-access datasets of organs-on-a-chip and organoids, and data generated in our laboratory. OOCDB contains dozens of sub-databases and analysis tools, and each sub-database contains various data associated with organs-on-a-chip, with the goal of providing researchers with a comprehensive, systematic, and convenient search engine. Furthermore, it offers a variety of other functions, such as mathematical modeling, three-dimensional modeling, and citation mapping, to meet the needs of researchers and promote the development of organs-on-a-chip. The OOCDB is available at http://www.organchip.cn.


Assuntos
Técnicas de Cultura de Células , Sistemas Microfisiológicos , Animais , Humanos , Bases de Dados Factuais
8.
Bioengineering (Basel) ; 9(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421086

RESUMO

Organ-on-a-chip (OOC) provides microphysiological conditions on a microfluidic chip, which makes up for the shortcomings of traditional in vitro cellular culture models and animal models. It has broad application prospects in drug development and screening, toxicological mechanism research, and precision medicine. A large amount of data could be generated through its applications, including image data, measurement data from sensors, ~omics data, etc. A database with proper architecture is required to help scholars in this field design experiments, organize inputted data, perform analysis, and promote the future development of novel OOC systems. In this review, we overview existing OOC databases that have been developed, including the BioSystics Analytics Platform (BAP) developed by the University of Pittsburgh, which supports study design as well as data uploading, storage, visualization, analysis, etc., and the organ-on-a-chip database (Ocdb) developed by Southeast University, which has collected a large amount of literature and patents as well as relevant toxicological and pharmaceutical data and provides other major functions. We used examples to overview how the BAP database has contributed to the development and applications of OOC technology in the United States for the MPS consortium and how the Ocdb has supported researchers in the Chinese Organoid and Organs-On-A-Chip society. Lastly, the characteristics, advantages, and limitations of these two databases were discussed.

10.
Front Genet ; 13: 851391, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35571024

RESUMO

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) are widely used for patients with EGFR-mutated lung cancer. Despite its initial therapeutic efficacy, most patients eventually develop drug resistance, which leads to a poor prognosis in lung cancer patients. Previous investigations have proved that non-coding RNAs including long non-coding RNAs (lncRNAs), circular RNAs (circRNAs), and microRNAs (miRNAs) contribute to drug resistance by various biological functions, whereas how they regulate EGFR-TKI resistance remains unclear. In this study, we examined gene expression using the microarray technology on gefitinib-resistant NSCLC cells to obtain differentially expressed (DE) lncRNAs and mRNAs. A total of 45 DE-lncRNAs associated with overall survival and 1799 target DE-mRNAs were employed to construct a core lncRNA-miRNA-mRNA network to illustrate underlying molecular mechanisms of how EGFR-TKI resistance occurs in NSCLC. We found that target DE-mRNAs were mainly enriched in pathways involved in EGFR-TKI resistance, especially the target DE-mRNAs regulated by LINC01128 were significantly enriched in the PI3K/Akt signaling pathway, where the synergy of these target DE-mRNAs may play a key role in EGFR-TKI resistance. In addition, downregulated LINC01128, acting as a specific miRNA sponge, decreases PTEN via sponging miR-25-3p. Furthermore, signaling reactions caused by the downregulation of PTEN would activate the PI3K/Akt signaling pathway, which may lead to EGFR-TKI resistance. In addition, a survival analysis indicated the low expression of LINC01128, and PTEN is closely related to poor prognosis in lung adenocarcinoma (LUAD). Therefore, the LINC01128/miR-25-3p/PTEN axis may promote EGFR-TKI resistance via the PI3K/Akt signaling pathway, which provides new insights into the underlying molecular mechanisms of drug resistance to EGFR-TKIs in NSCLC. In addition, our study sheds light on developing novel therapeutic approaches to overcome EGFR-TKI resistance in NSCLC.

11.
Biochem Biophys Res Commun ; 611: 31-37, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35477090

RESUMO

Previous studies demonstrated that arginine biosynthesis was frequently impaired in acute liver injury. However, the underlying mechanisms remain elusive. In this study, we found that Argininosuccinate synthetase 1 (ASS1), a rate-limiting enzyme in arginine metabolism, was downregulated in the TAA-induced liver injury model. Single-cell RNA-seq data found that ASS1 was highly enriched in the hepatocytes. The reduction of ASS1 was attributed to the decreased expression of Farnesoid X receptor (FXR), which is a bile acid-activated nuclear hormone receptor with high expression in the liver. Subsequent studies demonstrated that activation of FXR by its agonist obeticholic acid (OCA) directly promoted ASS1 transcription and enhanced arginine synthesis, leading to the alleviation of TAA-mediated liver injury. Further experiments found that OCA, ASS1, and arginine supplement can rescue TAA-mediated hepatocytes apoptosis by decreasing the protein levels of Cyto C, PARP, and Caspase 3. Taken together, our study illustrated a protective role of the FXR/ASS1 axis in TAA-induced liver injury by targeting arginine metabolism, which might shed light on the development of novel therapeutic approaches for acute liver injury.


Assuntos
Arginina , Argininossuccinato Sintase , Doença Hepática Crônica Induzida por Substâncias e Drogas , Receptores Citoplasmáticos e Nucleares , Animais , Arginina/metabolismo , Argininossuccinato Sintase/genética , Argininossuccinato Sintase/metabolismo , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo
12.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35289353

RESUMO

MOTIVATION: The human major histocompatibility complex (MHC), also known as human leukocyte antigen (HLA), plays an important role in the adaptive immune system by presenting non-self-peptides to T cell receptors. The MHC region has been shown to be associated with a variety of diseases, including autoimmune diseases, organ transplantation and tumours. However, structural analytic tools of HLA are still sparse compared to the number of identified HLA alleles, which hinders the disclosure of its pathogenic mechanism. RESULT: To provide an integrative analysis of HLA, we first collected 1296 amino acid sequences, 256 protein data bank structures, 120 000 frequency data of HLA alleles in different populations, 73 000 publications and 39 000 disease-associated single nucleotide polymorphism sites, as well as 212 modelled HLA heterodimer structures. Then, we put forward two new strategies for building up a toolkit for transplantation and tumour immunotherapy, designing risk alignment pipeline and antigenic peptide prediction pipeline by integrating different resources and bioinformatic tools. By integrating 100 000 calculated HLA conformation difference and online tools, risk alignment pipeline provides users with the functions of structural alignment, sequence alignment, residue visualization and risk report generation of mismatched HLA molecules. For tumour antigen prediction, we first predicted 370 000 immunogenic peptides based on the affinity between peptides and MHC to generate the neoantigen catalogue for 11 common tumours. We then designed an antigenic peptide prediction pipeline to provide the functions of mutation prediction, peptide prediction, immunogenicity assessment and docking simulation. We also present a case study of hepatitis B virus mutations associated with liver cancer that demonstrates the high legitimacy of our antigenic peptide prediction process. HLA3D, including different HLA analytic tools and the prediction pipelines, is available at http://www.hla3d.cn/.


Assuntos
Antígenos de Histocompatibilidade Classe I , Neoplasias , Biologia Computacional , Antígenos HLA/genética , Antígenos de Histocompatibilidade Classe I/química , Humanos , Imunoterapia , Peptídeos/química , Ligação Proteica
13.
Front Microbiol ; 13: 1085079, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36704562

RESUMO

Background: Lungs were initially thought to be sterile. However, with the development of sequencing technologies, various commensal microorganisms, especially bacteria, have been observed in the lungs of healthy humans. Several studies have also linked lung microbes to infectious lung diseases. However, few databases have focused on the metagenomics of lungs to provide microbial compositions and corresponding metadata information. Such a database would be handy for researching and treating lung diseases. Methods: To provide researchers with a preliminary understanding of lung microbes and their research methods, the LDMD collated nearly 10,000 studies in the literature covering over 30 diseases, gathered basic information such as the sources of lung microbe samples, sequencing methods, and processing software, as well as analyzed the metagenomic sequencing characteristics of lung microbes. Besides, the LDMD also contained data collected in our laboratory. Results: In this study, we established the Lung Disease Microorganisms Database (LDMD), a comprehensive database of microbes involved in lung disease. The LDMD offered sequence analysis capabilities, allowing users to upload their sequencing results, align them with the data collated in the database, and visually analyze the results. Conclusion: In conclusion, the LDMD possesses various functionalities that provide a convenient and comprehensive resource to study the lung metagenome and treat lung diseases.

14.
Mol Ther Nucleic Acids ; 26: 1351-1363, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34853732

RESUMO

Aberrant expression of long non-coding RNAs (lncRNAs) has been reported in multiple cancers. However, the underlying mechanisms mediated by super-enhancers remain elusive. Here we sought to define the role of a novel lncRNA termed lncRNA-DAW in tumorigenesis. Our results revealed that lncRNA-DAW was driven by a liver-specific super-enhancer and transcriptionally activated by HNF4G, leading to frequent elevation in hepatocellular carcinoma (HCC) specimens. Ectopic expression of lncRNA-DAW promoted both in vivo and in vitro tumor growth. By using RNA sequencing, Wnt2 was screened out as a downstream effector of lncRNA-DAW. We next found that lncRNA-DAW physically interacted with EZH2, a negative regulator of Wnt2. This interplay subsequently potentiated CDK1-EZH2 interaction, leading to the phosphorylation and ubiquitination of EZH2. The lncRNA-DAW-mediated EZH2 degradation facilitated the de-repression of Wnt2 transcription, which eventually activated the Wnt/ß-catenin pathway. Furthermore, we verified that Wnt2 potentiated in vitro and in vivo cancer cell growth by activating the Wnt/ß-catenin pathway. Finally, Wnt2 amplification was confirmed as a common event in liver cancer, and the expression of lncRNA-DAW was positively correlated with Wnt2 in HCC specimens. Collectively, we are the first to identify lncRNA-DAW as a novel candidate oncogene in liver cancer, and this lncRNA may serve as a novel clinical diagnosis biomarker for liver cancer.

15.
Liver Res ; 5(4): 209-216, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34603826

RESUMO

BACKGROUND AND AIM: Coronavirus disease 2019 (COVID-19) is a life-threatening disease that predominantly causes respiratory failure. The impact of COVID-19 on other organs remains elusive. Herein, we aimed to investigate the effects of COVID-19 on the hepatobiliary system. METHODS: In the current study, we obtained the clinical records and laboratory results from 66 laboratory-confirmed patients with COVID-19 at the Wuhan Tongji Hospital between 10 February 2020 and 28 February 2020. The detailed clinical features and laboratory findings were collected for analysis. Bioinformatics analysis was conducted to evaluate the correlation between gamma-glutamyl transferase (GGT) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry receptor angiotensin-converting enzyme 2 (ACE2). RESULTS: In this cohort, 30 (51.7%) patients had abnormal liver function on admission, which was associated with disease severity and enriched in the male and diabetic patients. The elevated levels of direct bilirubin (P = 0.029) and GGT (P = 0.004) were common in patients with severe pneumonia when compared with those with mild pneumonia. In addition, elevated levels of GGT (P = 0.003) and aspartate aminotransferase (AST) (P = 0.007) were positively associated with longer hospital stay. The expression of ACE2 was closely associated with GGT in various human tissues because they shared the common transcriptional regulator hepatic nuclear factor-1ß (HNF1B). CONCLUSIONS: Increased GGT levels were common in severe cases and elevated GGT levels were positively associated with prolonged hospital stay and disease severity. Due to the consistent expression with ACE2, GGT is a potent biomarker indicating the susceptibility of SARS-CoV-2 infection.

16.
Mol Cancer ; 19(1): 38, 2020 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-32101138

RESUMO

Despite their small numbers, cancer stem cells play a central role in driving cancer cell growth, chemotherapeutic resistance, and distal metastasis. Previous studies mainly focused on how DNA or histone modification determines cell fate in cancer. However, it is still largely unknown how RNA modifications orchestrate cancer cell fate decisions. More than 170 distinct RNA modifications have been identified in the RNA world, while only a few RNA base modifications have been found in mRNA. Growing evidence indicates that three mRNA modifications, inosine, 5-methylcytosine, and N6-methyladenosine, are essential for the regulation of spatiotemporal gene expression during cancer stem cell fate transition. Furthermore, transcriptome-wide mapping has found that the aberrant deposition of mRNA modification, which can disrupt the gene regulatory network and lead to uncontrollable cancer cell growth, is widespread across different cancers. In this review, we try to summarize the recent advances of these three mRNA modifications in maintaining the stemness of cancer stem cells and discuss the underlying molecular mechanisms, which will shed light on the development of novel therapeutic approaches for eradicating cancer stem cells.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Neoplasias/patologia , Células-Tronco Neoplásicas/patologia , RNA Mensageiro/química , Animais , Diferenciação Celular , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
J Cell Biochem ; 121(2): 1431-1440, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31502329

RESUMO

It is well characterized that activated hepatic stellate cells (HSCs) exert critical functions in accelerating the progression of liver fibrosis. Previous studies have indicated that Dahuang Zhechong pill (DHZCP), a traditional Chinese herbal medicine, is capable of inactivating HSCs and thus attenuate the formation of liver fibrosis in rats. However, pharmacological mechanisms of DHZCP in alleviating liver fibrosis remain unclear. This study aims to investigate the antifibrotic role of DHZCP through inhibiting the phosphatidylinositol 3-kinase (PI3K)-protein kinase B (Akt) pathway. DHZCP was found to significantly suppresses extracellular matrix formation and immune cell infiltration, thus alleviating liver fibrosis symptoms in the in vivo model. Moreover, DHZCP reduced serum levels of transforming growth factor ß1 and tumor necrosis factor-α in rats with liver fibrosis. DHZCP treatment remarkably downregulated protein levels of PI3K and phosphorylated Akt, as well as fibrosis markers. In vitro experiments further demonstrated that DHZCP markedly suppressed HSCs proliferation by downregulating PI3K/Akt, which exerted a synergistic effect with the PI3K inhibitor LY294002. To sum up, our results confirmed that DHZCP exerted an antifibrotic effect in the animal model through inactivating the PI3K/Akt pathway, thus protecting rats from liver injury.


Assuntos
Tetracloreto de Carbono/toxicidade , Medicamentos de Ervas Chinesas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Cirrose Hepática/tratamento farmacológico , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Masculino , Fosfatidilinositol 3-Quinase/genética , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley
19.
Genome Biol ; 20(1): 84, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31027518

RESUMO

BACKGROUND: Circular RNAs are a class of regulatory RNA transcripts, which are ubiquitously expressed in eukaryotes. In the current study, we evaluate the function of a novel circRNA derived from the ß-catenin gene locus, circß-catenin. RESULTS: Circß-catenin is predominantly localized in the cytoplasm and displays resistance to RNase-R treatment. We find that circß-catenin is highly expressed in liver cancer tissues when compared to adjacent normal tissues. Silencing of circß-catenin significantly suppresses malignant phenotypes in vitro and in vivo, and knockdown of this circRNA reduces the protein level of ß-catenin without affecting its mRNA level. We show that circß-catenin affects a wide spectrum of Wnt pathway-related genes, and furthermore, circß-catenin produces a novel 370-amino acid ß-catenin isoform that uses the start codon as the linear ß-catenin mRNA transcript and translation is terminated at a new stop codon created by circularization. We find that this novel isoform can stabilize full-length ß-catenin by antagonizing GSK3ß-induced ß-catenin phosphorylation and degradation, leading to activation of the Wnt pathway. CONCLUSIONS: Our findings illustrate a non-canonical function of circRNA in modulating liver cancer cell growth through the Wnt pathway, which can provide novel mechanistic insights into the underlying mechanisms of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/etiologia , Neoplasias Hepáticas/etiologia , RNA/metabolismo , Via de Sinalização Wnt , beta Catenina/genética , Animais , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Técnicas de Silenciamento de Genes , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Camundongos Nus , Metástase Neoplásica , RNA Circular
20.
Cancer Manag Res ; 10: 2389-2400, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30122988

RESUMO

BACKGROUND: To explore potential therapeutic target is one of the areas of great interest in both clinical and basic hepatocellular carcinoma (HCC) studies. Nuclear receptor liver receptor homolog-1 (LRH-1, NR5A2) is proved to play a positive role in several cancers including breast cancer, pancreatic cancer and intestinal cancer in recent years. However, the exact role of LRH-1 in the development and progression of HCC is not fully elucidated. METHODS: The LRH-1 expression level in HCC clinical samples was examined by immunohis-tochemistry (IHC). Stable LRH-1-suppressed HepG2 clones (HepG2LRH-1/-) were generated by transcription activator-like effector nucleases (TALENs) and both in vitro and in vivo experiments were conducted. RESULTS: We confirmed that LRH-1 showed an increased expression pattern in HCC clinical samples. Our in vitro and in vivo results indicated that suppression of LRH-1 in HepG2 significantly attenuated its proliferation rate and tumorigenic capacity. Gene expression microarray analysis indicated that LRH-1mostly regulated gene expression involved in cell cycle. In addition, our gain-of-function experiments indicated that ectopic expression of LRH-1 dramatically induced the mRNA and protein levels of c-myc and cyclin E1, while attenuating the expression of p21. CONCLUSION: Our results suggest that LRH-1 might be a potential therapeutic target for clinical HCC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...